 Cradle-/

From concept to creation...

Reusing Information
with Adaptations
in Cradle

RA004/08 February 2023

© February 2023 3SL. All rights reserved. Structured Software Systems Ltd (3SL)
Cradle is a registered trademark of 3SL in the UK and other countries. All rights reserved. Suite 2, 22a Duke Street
All other trademarks are the property of their respective owners. Barrow-in-Furness

Cumbria LA14 1HH, UK
http://www.threesl.com Tel: +44 (0) 1229 838867
salesdetails@threesl.com Fax: +44 (0) 1229 870096
support@threesl.com Regd: 2153654 VAT: GB 473 2757 28

3SL

Certificate Number 169!
1SO 9001

3SL

Reusing Information with Adaptations in Cradle

Introduction

Contents

Introduction 1

Subject 1

Adaptations......... oL 1
1 Adapting One Type of Information .. 2
1.1 TypicalData, 2
1.2 SchemaSetup.................... 2
1.3 Creating New Items 3
1.4 Usealibraryltem 3
1.5 Adapta Libraryltem 3
1.6 Browsingc.cviinvn... 4
2 Adaptations for Two Types of Item .. 4
2.1 TypicalData 5
2.2 SchemaSetup.................... 5
2.3 Alternative Schemas 6
2.4 CreatingNewltems 6
2.5 Usealibraryltem 6
2.6 Adaptalibraryltem 7
3 Summary ... 8

List of Tables

Table 1:Link Rules to Adapt 1 Item Type .. 3
Table 2:Link Rules to Adapt 2 Item Types . 6

Copyright © February 2023 Structured Software
Systems Ltd

Cradle is a registered trademark of Structured Software
Systems Limited. All other products or services in this
document are identified by the trademarks or service
marks of their respective organisations.

Most organisations have products, created
and evolved in projects. Product information
is typically managed as a library of standard
items, often baselined. Each project adds new
information and changes existing information.
In general, changes do not affect library
items or the links between them so other
uses of the library do not become invalid.
This is especially common in agile projects.

Subject

This paper describes how Cradle's adaptation
mechanism implements a library and projects that
reference that library in one database.

It considers two uses of adaptations that will
meet the needs of any project:

1. Adaptations of 1 information type. This
occurs when a library and project use an
item type. The project items are specific
to the project, or library references, or
are adaptations of the library items.

2. Adaptations of 2 information types. This
occurs when project items are linked to
library information of a different type,
and may then create adaptations of that
library information for its own use.

The paper assumes a familiarity with Cradle.

Adaptations

Adaptations are copies of items that inherit
links to the items’ related information. The
adaptation is linked to the original item and
the inherited items by user-defined types of
cross reference. Adaptations are highlighted
by user-defined marks in their names.
Adaptations and references are highlighted
in the Ul and reports in the colour defined
for the adaptation and reference link types.

An adaptation creates a project's copy of an
item in a library, so the project can change
the item for its own purposes.

Contents

Reusing Information with Adaptations in Cradle

3SL

Adapting One Type

of Information 1

Typical Data 1.1

EHRA1.3.3.22Q
EH&1.3.3.23R
2 Commercial Requirements
[=HR Projects
[=HR Project A
[=HR 1 Business Requirements
=HA 2 Technical Requirements
E|-. 3 Commercial Requirements

This is the simplest situation. A hierarchy of items exists in
the library and the project will have its own hierarchy of
the same type of item. The project will:

* Create its own items
* Reference items from the library
* Create its own adaptations of library items

The important characteristics of this case is that all items
are of the same type.

A library has requirements as REQ items. A project has
requirements, also as REQ items. The project may
reference library requirements or adapt them. All other
project information will link to requirements in the
project’s own hierarchy. A typical set of requirements
could be:

Schema Setup 1.2 Define three link types with names such as:
°* HAS CHILD, for the parent-child links in the

Item type: | REQ

Enable Auto Numbering
Prefic: R-

Suffix:

Initial Value: 1 Increment: 1

[zero pad

Enable Hierarchical Options

Attribute: Key
Reorder

[] Allow item to become new top-level item
[] Allow rearder autside original higrarchy

| Enable Adaptations |

Indicate adaptations with the text: [adapt]

Append the text to the attribute: MName

If the attribute is too long, truncate it by: Append text, then truncate

Adaptation Link Type: S ADAFTATION OF
REFERENCES -]

Reference Link Type:

- | Separator: Dot

library’'s and projects’ hierarchies

* REFERENCES, for references from projects into
the library

* IS ADAPTATION OF, for the adaptation links

and set colours for the references and adaptations
link types that will be used to colour items in the UI.

Enable the hierarchy options, but do not allow any
reordering:

* To become top-level items
* Outside an item’s own hierarchy

Enable adaptations for the item type REQ and

ok][cance ||

specify the adaptations and references link types.

Help |

Adapting One Type of Information

Reusing Information with Adaptations in Cradle

Creating New Items

1.3

Use a Library Item

1.4

Phase
£53 Repositary
@), Explore Repository
-, Browse Repository
53 Library
&), Explore Library
EHE Library
= Requirements
LibCom Library Commercial Requirements
. & LibFuncLibrary Functional Requirements
| =B LibNenFunc Library Non-Functional Requ

B LibNonFunc.2.1 Requirement S
B LibNonFunc.2.2 Requirement T
"B Functions
& system Components
Q1 Browse Librarv

Phase 9 x
{23 Repository -

(@), Explore Repasitary
0, Browse Repository
=53 Library
=@, Explore Library
{EE Lbay
=& Requirements
| @ LibCom Library Commercial Requirements
. =B LibFunc Library Functional Requirements
- £ LibNonFunc Library Non-Functional Requ
| =B LibNenFuncl Requirement N
=J& libNonFunc2 Requirement Q
B LbNonFunc.2.1 Requirement 5
B8 LibNonFunc.2.2 Requirement T
& Fundtions

@ X | Quemn: REQ-Project AToplevel

< || start Page B REQ - Project AToplLevel %

Define the link rules for these three link types for the item
type (REQ in this case) to be:

Table 1: Link Rules to Adapt 1 Item Type

From Item To Item Link Type Default
REQ REQ HAS CHILD Y

REQ REQ or <any> REFERENCES

REQ REQ IS ADAPTATION OF

Cradle will create these rules automatically for you.

The project creates new items by selecting existing REQ
items and using the Cradle operations:

* New — Child, to create a child of an existing REQ item
* New — Sibling, to create a sibling of a REQ item

New — Hierarchy, to create a hierarchy of REQ items

All new items will be linked to the existing items by HAS
CHILD links, as this is the default link type for cross
references between REQ and REQ items.

To use a library requirement inside the project’s hierarchy:

1. Open the library hierarchy and find the item to be

referenced

2. Open the project hierarchy and find where to place
the referenced item
3. Drag & drop the library item onto the project item and

choose Create Reference...
4. Click OK in the next dialog

User ID

B LibNonFuncl Requirement N
= B LibNonFunc.2 Requirem

-8 Previous...

£ NonFunc

B com Project A Commerdial Requirements
B FuncProject A Functional Requirements

Query: REQ - Project A TopLevel

A REFERENCES cross reference is
created from the project item to
the library item. The library item is
shown in green to emphasise that
it is a reference.

Com
Func
Project A Non-Fundtional Requirements NenFunc

MonFuncl

Create Child REQ Item(s) as Adaptations

Reorder Before this ltem

The expansion of the requirement
in the library is now part of the
project's requirement hierarchy, so
in the example, requirements S
and T can be seen in the project’s

Reorder After this ltem
Rearder as New Child of this tem

Create Cross Reference

Start Page B REQ - Project A Toplevel X
User ID

& [FuncProj
=8 NonFunc
- m§ uone
i w-J§ norF

. =B _NonF

Adapt a Library Item 1.5

Com Project A Commercial Requirements

own requirement hierarchy.

Com

ject A Functional Requirements Func

profect A o funcion equrenents oo | most - cases, the referenced
unc1 Requirement Q [adapt] MonFuncl req u | reme nt a nd |ts expa n SiO n

unc.2 Another New Req for Project A NonFunc.2

would be read-only to the user
who has referenced them.

LibMonFunc.2.1
LibNonFunc.2.2

LibNonFunc.2.1 Requirement 5

LibNonFunc.2.2 Requirement T

If the project wants to change an item referenced from the
library, to:

Adapting One Type of Information

3SL

Reusing Information with Adaptations in Cradle

* Change the requirement itself
* Change the items that are linked to the requirement
¢ Change any of the linked requirements

it cannot change the library item because it may be used
elsewhere, and it should be read-only to the project. So
the project must create an adaptation of the library
requirement, by selecting it and:

G — = w=mey ¢ Right-click and Replace by Adaptation, or
R e ——e " © In the Item tab, select Replace by Adaptation
o B o Altec A dialog will be shown that summarises what links will
(S B be created. Select OK in this dialog and:

* The requirement will be replaced by an adaptation, a
copy of the requirement that is owned by the user

* Theitem is named and coloured as an adaptation

* Theitemis linked in the project requirement hierarchy

* The item is linked by references to the same items to
which the library requirement is linked

* The adaptation is linked to the library item by an IS
ADAPTATION OF link

e © & [The library reqmremenjc Qis
25 Repository =] [[startpage || B ReQ-projectA TopLees *_‘ replaced by an adaptation of
5 ore Repasitol User ID] . .
b R Q that the project can modify
i . e = . as needed, and the expansion
b SR g w7 of the library requirement Q

- LibCom Library Commercial Requirements [ﬂ- MonFunel Requirement Q [adapt] i HonFuncl F |S now the eXpanSIOﬂ Of the
i [LibFunc Library Functional Requirements |-7. NonFunc.2 Another New Reqg for Project A NonFunc2 » . , R

[LibNonFunc Library Nan-Functional Requ Sl Ferruncz T Reauienent Q bdapt] WonFunczi - F prOJeCtS own requn‘ement Q.

i ey o oo owwnoo - SO requirements S and T in

[B LibNonFunc21 Requirement B et the eXampIe can be seen in

Wl Fition: the project’'s own requirement

hierarchy as references.

Browsing 1.6 When a database uses adaptations there will be many
links between items. When browsing such databases, it is
helpful to not follow adaptations’ cross references except
when you know you want to use them, such as to find

Mavigation: | Down Mo Adaptations <

s | Attributes | library items that have been adapted by projects.
Links: <any> -

To avoid following adaptations’ cross references, always
U use a navigation which will exclude adaptation cross
Instance: Latest Instance . references, such as the Down No Adaptations navigation
B e provided with all Cradle systems. You can exclude
Exclude adaptation cross referencesl . . .
adaptation cross references by simply selecting a

Sort linked items by: ldentity

[Save A5] checkbox in the setup of the navigation, as shown.

Follow Links: Downwards ©

l

i This is the typical case where adaptations are helpful. A
Adaptations for Two h h | here ad helpful
hierarchy of items exists in the library and the project has
Types of Item 2 a hierarchy of a different type of item. The project will:

* Create its own items
* Reference items from the library

Adaptations for Two Types of Item n

3SL

Reusing Information with Adaptations in Cradle

Typical Data

2.1

e Create its own adaptations of library items

In this case, two item types are involved, and all other
project information only links to the project information,
not information in the library.

Library
Features
1A

Risks
Projects
Project A
Customer Needs
[=H& 1 Functional

Schema S

EHR1.1 AA
EHR1.28BB

etup

2.2

A project has customer needs as NEED items and creates
features as FEATURE items to satisfy these needs. The

features may be derived from a set of standard features
held in the library. All other project information will only
link to features in the project’s own hierarchy.

A typical set of information could be:

W, Numbering Options Setup

Item type: FEATURE

Prefic F-
Suffix:
Initial Value: 1

[zero pad

Attribute: | Key

Enable Auto Numbering

Enable Hierarchical Options

Increment: 1

Reorder

D Allow item to become new top-level item
D Allow reorder outside original hierarchy

I Enable Adaptations

Indicate adaptations with the text:
Append the text to the attribute:

[adapt]

Mame

Define four link types with names such as:

* HAS CHILD, for the parent-child links
* REFERENCE TO, for the references from projects into

= | Separator Dot

If the attribute is too long, truncate it by: Append text, then truncate

Reference Link Type:

Adaptation Link Type: ADAPTATION OF

REFERENCE TO

QK

H Cancel H Help

the library
°* ADAPTATION OF, for the adaptation links
e SATISFIED BY, for links from needs to the
features

and set colours in the reference and adaptation
link types to colour items in the Ul.

Enable hierarchical options and do not allow
reordering:

* To become top-level items
e OQOutside an item’s own hierarchy

Enable adaptations for FEATUREs and NEEDs
and specify the adaptations and references link
types for both item types. The figure to the left
shows the setup for FEATURE items. The setup

Adaptations for Two Types of Iltem

Reusing Information with Adaptations in Cradle

3SL

Alternative Schemas 2.3

Creating New Items 2.4

Use a Library Item 2.5

for NEEDs is the same.

Define the link rules for these items and link types to be:

Table 2: Link Rules to Adapt 2 Item Types

From Item To Item Link Type Default
FEATURE FEATURE HAS CHILD Y
FEATURE FEATURE or <any> REFERENCE TO

FEATURE FEATURE ADAPTATION OF

NEED NEED HAS CHILD Y

NEED NEED or <any> REFERENCE TO

NEED NEED ADAPTATION OF

NEED FEATURE SATISFIED BY

Cradle will create these rules automatically for you.

When items of type A are linked to items of type B:

* Toreference Bs from As, enable adaptations for As
* To create adaptations of Bs from As, enable adaptations
for the Bs

If adaptations are enabled for NEEDs, but not FEATURES,
you can create a reference from a NEED to a FEATURE.

If adaptations are enabled for FEATURES and not NEEDs,
you can create a link from a NEED to an adaptation of a
FEATURE.

If adaptations are enabled for FEATURES and NEEDs, you
can:

* Create a reference from a NEED to a FEATURE

* Replace a referenced FEATURE by an adaptation

* Create a link from a NEED to an adaptation of a
FEATURE, doing the first two of these operations in
sequence

You can also create any cross references allowed by the
schema’s link rules, such as SATISFIED BY links from
NEEDs to FEATURES.

The project creates new items by selecting existing NEED
items and using the Cradle operations:

* New — Child, to create a child of an existing NEED
* New — Sibling, to create a sibling of an existing NEED
* New — Hierarchy, to create a hierarchy of NEEDs

New items will be linked to the existing items by HAS
CHILD links, the default link type for cross references
between NEED items.

To reference a library feature from the project’'s needs
hierarchy:

Adaptations for Two Types of Item

Reusing Information with Adaptations in Cradle

Phase

o x

{5 Company ABC

|| start Page

Query: NEED - Top-Level

|| B NEED - Top-Level x

Identity

| & {{z Library
& plore Library
RUCTURE: Library All Product Information (4}
STRUCTURE: Features All Product Features ()
& FEATURE: F-1: 1 Feature A (4]
B8 FEATURE: F-2: 2 Feature B (4]
) FEATURE: F-3:3 Feature C (4]
= B FEATURE: F-6: 3.1 Feature F (4] mee——
=B FEATURE: F-11:3.1.1 Feature K (4]
B FEATURE: F-14:3.1.1.1 Feature N (4)
B FEATURE: F15:3.1.1.2 Feature O (4)
E FEATURE: F-7:3.2 Feature G (4]
i & FEATURE: F-8:3.3 Feature H (4)
“[8 STRUCTURE: Risks All Known Risks (4)

C B Next.

= Previous..

STRUCTURE: Projects All Projects (4]
STRUCTURE: Project & My Project [4)
STRUCTURE: Needs All Customer Needs (4]
= B NEED: N-L: 1 Functional (&)
/&) MEED: N-3:11 Need AA (A)

Projects
Project |
Needs
-l

N3

2.

- E sTRUCTUR

B [Ty
PRTE| Create Reference to FEATURE Tem(s)

Create Child FEATURE ltem(s) as Adaptations 1

Create Cross Reference

Phase @ ® | Quew MNEED - Top-Level
753 Company ABC [start Page » || [NEED - Top-Level x
| =53 Library _

=@, Explore Library ~ & Previous..

STRUCTURE: Library All Product Infarmation (4}

FEATURE: F-1: 1 Feature A (A)
FEATURE: F-2: 2 Feature B (4)
FEATURE: F-3: 3 Feature C (4]

=B FEATURE: F-11:3.1.1 Feature K (4)
B FEATURE: F-14:3.1.1.1 Feature N (4)
ﬁ FEATURE: F-15:3,1.1.2 Feature O (4}
E FEATURE: F-7:3.2 Feature G (4)

& . FEATURE: F-8: 3.3 Feature H (4)

Adapt a Library Item 2.

URE: Projects All Projedts (4]

STRUCTURE: Project & My Project (4}
= STRU! TTEedE AT Castomer Teeds
= NEED: N-L:1 Functional (4)

E4 NEED: N-3:1.1 Need AA (4]
NEED: N-4:1.2 Need BB (4)

=B FEATURE: F-11:3.1.1 Feature K (4]
B FEATURE: F-14:3.1.1.1 Feature N (4)

----- B FEATURE: F-15:3.1.1.2 Feature O (4)
| B NEED:N-2:2 Commercial (4)

3.

Open the library hierarchy
and find the item to be
referenced

Open the project hierarchy
and find where the
referenced item should be
placed

Drag and drop the library
item onto the project item

and choose Create Reference...
4. Click OK in the next dialog

A cross reference is created from
the project item library item. The
library item is shown in green to
emphasise that it is a reference.

The expansion of the library feature
is now part of the project’s item
hierarchy, so features K, N and O in the example can be
seen in the project's own hierarchy.

In most cases, the referenced feature and its expansion
would be read-only to the user who has referenced them.

6

Start Page [E| STRUCTURE - Top-Level X

library, to:

If the project wants to change an item referenced from the

* Change the item itself, the FEATURE in this

[1dentity |

case

E| Previous...

STRUCTURE: Prajects All Projects (A}
=|-[E| STRUCTURE: Project A My Project (&)
STRUCTURE: Meeds All Customer Needs (A)
MNEED: N-1:1 Functional (&)
MEED: N-3: 1.1 Meed AA [4)
MEED: N-4:1.2 Meed BB [4)

=]

. EE E Open
& MEED:N-2:2| New

) STRUCTURE: Proje | [Copy.
7 Delete...

- FEl Replace by Adaptation

Projects
Project & []
Meeds
M-1
M3
N-4

Cirl+0

»
Alt+C

Phase 0 x
(53 Company ABC
Er@ Library
é Gl, Explore Library

= \E| STRUCTURE: Library All Product Information (4)
TRUCTURE: Features All Product Features (4]
FEATURE: F-1: 1 Feature A (4)
FEATURE: F-2: 2 Feature B (4)
& FEATURE: F-3:3 Feature C [4)
FEATURE: F-6: 3.1 Feature F (4]
= B FEATURE: F-11:3.1.1 Feature K (4)
- [FEATURE: F-14:3.1.1.1 Feature N ()
" [FEATURE: F-15:3.1.1.2 Feature O (4)
B8 FEATURE Fo7 @ 3.2 Feature G ()
(- FEATURE: F-8: 3.3 Feature H (4)
% STRUCTURE: Risks All Known Risks (A}

* Change the items that are linked to the item
Change any of the linked items

it cannot change the library item because it may be
used elsewhere, and it should be read-only to the
project. So the project must create an adaptation
of the library item, by selecting it and:

* Right-click and Replace by Adaptation, or
* Inthe Item tab, select Replace by Adaptation

A dialog will be shown that summarises what links will be
created. Select OK in this dialog and:

* The feature will be replaced by an adaptation, a copy
of the feature that is owned by the user

Query: STRUCTURE - Top-Level

Start Page | STRUCTURE - Top-Level %

) Previous...

=+ STRUCTURE: Projects Al Projects (&)

=-& STRUCTURE: Project A My Project (A}
/& STRUCTURE: Needs All Customer Needs [A]
i - MEED: N1 :1 Functional (4]
i B NEED: N3: 1.1 Need AA [4)
[=5=" Jd

-Z:2 Commerdia

& next..

E_LLED Ut | A lead I is

=) - FEATURE: F-19: 1 Feature K [Adapt] (&)
+[88 FEATURE: F-14:3.11.1 Feature N (&)
- - FEATURE: F-15:3.1.1.2 Feature O (4]

The item is named and
coloured as an adaptation
The item is linked into the
project's needs hierarchy

The item is linked by
references to the same items
to which the library feature is
linked

RuGu;lE:Prmmwss Work Breakdown stuctue. SO the original |ibrary feature K

Adaptations for Two Types of Iltem

3SL

Reusing Information with Adaptations in Cradle

Summary

has been replaced by an adaptation of K that the project
can modify as needed, and the expansion of the library
feature K is now the expansion of the project’s feature K.
So features N and O in the example can be seen in the
project's own hierarchy.

An organisation can reuse information between projects
by simply having a set of items in a library and then
creating cross references from these into the projects that
use them.

However, this creates a problem that if a project wishes to
change a library item that it is using, it cannot change that
library item:

* Because other projects may be using it
* Because the project should have read-only access to
the library

The adaptations mechanism overcomes these problems,
making it easy to reference library information and to
make project-specific adaptations of this information.

The adaptations mechanism is part of the Cradle-PDM
(project data management) module, so it is free to use,
and is available in all Cradle systems.

Summary

	Contents
	List of Tables
	Introduction
	Subject
	Adaptations
	Adapting One Type of Information 1
	Typical Data 1.1
	Schema Setup 1.2
	Creating New Items 1.3
	Use a Library Item 1.4
	Adapt a Library Item 1.5
	Browsing 1.6

	Adaptations for Two Types of Item 2
	Typical Data 2.1
	Schema Setup 2.2
	Alternative Schemas 2.3
	Creating New Items 2.4
	Use a Library Item 2.5
	Adapt a Library Item 2.6

	Summary 3

